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In this paper, the coupled longitudinal and lateral vibrations of a rectangular
parallelepiped composed of a uniform, isotropic, elastic body are examined. The
one-dimensional model for the body was developed by Green, Naghdi and several of their
co-workers. It is based on a Cosserat or directed rod theory. The frequency spectrum is
found to divide naturally into three regions which are separated by degenerate cases. When
the cross-section of the body is square, a natural splitting of the modes occurs. One-half of
this split involves motions coupling the axial extension and symmetric lateral deformation of
the body. The other half involves asymmetric lateral deformations. The cases of a free}free
rod and a cantilevered rod are discussed and the results compared to existing works in the
literature which use the three-dimensional theory of elasticity to model the vibrations.
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1. INTRODUCTION

The vibrations of three-dimensional rod-like bodies has attracted a signi"cant number of
works which can be classi"ed into two categories. The "rst category uses the
three-dimensional theory of linear elasticity to determine these vibrations, while the second
employs one-dimensional theories of rods. Arguably, the most famous contributions in this
area are the works of Pochhammer and Chree in the 19th century. They investigated
travelling waves in in"nitely long cylindrical bodies (see references [1, 2], and references
therein), and their solutions have become benchmarks for all other works on this topic.
However, if the rod-like body is "nite or does not have a cylindrical cross-section, then exact
solutions from the three-dimensional theory appear to be impossible to obtain in all but
a handful of cases. These di$culties have inspired a vast amount of work both in the
development of approximate solutions to the three-dimensional theory and in the
development of one-dimensional models based on rod theories. The latter models have
certain tractible features which render them suitable for design studies.

Despite the considerable amount of research on wave propagation and vibration of rods,
there is surprisingly little research on coupled longitudinal and lateral vibrations of rod-like
bodies with rectangular cross-sections. Speci"cally, Chree [3] in 1889 discussed an
approximate dispersion relation for long wavelength modes in an in"nitely long body with
an arbitrary cross-section. Later, Morse [4, 5] and Kynch and Green [6] examined this
problem for rectangular cross-sections. Most of their results pertain to large wavelength
vibrations. For parallelepipeds of "nite length, and using the three-dimensional theory of
linear elasticity, exact solutions were obtained for certain cases by LameH [7] and Mindlin
[8, 9] and approximate solutions have been obtained by Ekstein and Schi!man [10],
Hutchinson and Zillmer [11], Leissa et al. [12, 13], and Lim [14]. Recently, Rubin [15]
employed his theory of a Cosserat point to examine this problem.
0022-460X/01/450835#22 $35.00/0 ( 2001 Academic Press
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In the context of rod theories, the most commonly used model is the (one-dimensional)
wave equation:
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where u
3

is the longitudinal displacement and c
0

is the bar wave speed. This model,
however, does not incorporate lateral displacements. To this end, Love developed a model
which incorporates the inertia of these displacements (cf. section 278 of reference [1]):
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where l is the Poisson ratio and k is the polar radius of gyration of the cross-section. A more
accurate model was developed by Green and Nagdhi and several of their co-workers as
a particular case of their rod theory [16}21]. This rod theory was the basis for a study of
these motions in rods with rectangular cross-sections by Turcotte [22] and Krishnaswamy
and Batra's work in references [23}25] for rods with circular cross-sections.s In the present
paper, Green and Naghdi's rod theory is also used to study the vibrations, and Turcotte's
results are signi"cantly extended. One of the motivations for examining the coupled
longitudinal and lateral vibrations lies in extending several recent studies of the steady
motions of rods (cf. references [27, 28]). As a precursor to examining the linear stability of
these motions, it is necessary to examine the vibrational response of the rest state. The
developments of the present paper address this matter.

Since the model used here is not very well known, section 2 of this paper is partially
devoted to supplying the relevant background. There, it is necessary to alter some of the
constitutive prescriptions commonly used in order to match certain dynamic solutions of
this theory with those from three-dimensional considerations. Next, in section 3, the
free-vibrations problem for the model is discussed and various intermediate results are
established. These results show that the frequency spectrum is split into three by the
presence of two degenerate cases. These cases are similar to the thickness-shear mode
observed in Timoshenko's beam theory (see references [29, 30], and references therein).
Section 4 is devoted to the special case of a square cross-section. For this case, the governing
equations split into two sets. One of these sets is similar to the equations considered by
Mindlin and Herrmann [26] and Krishnaswamy and Batra [23], while the other set
governs asymmetric vibrations of the cross-sections. Prescriptions for three constants
appearing in the model are presented in section 5. These prescriptions are based on the
works of Rubin [15, 31] and Mindlin and Deresiewicz [32]. To illustrate the predictions of
the model, the case of a free}free rod with a rectangular cross-section is discussed in section
6, while a rod with a square cross-section is discussed in section 7. In section 8, the case of
a "xed}free (or cantilevered) rod is considered. The closing section of the paper discusses
actuation of the vibrations.

2. APPLICATION OF A DIRECTED ROD THEORY

Dating to a seminal paper by Green and Laws [16], Green, Naghdi and several of their
co-workers developed a theory for deformable rod-like bodies. In this theory, the rod is
sKrishnaswamy and Batra's model for these vibrations is similar to one proposed by Mindlin and Herrmann
[26].



Figure 1. The reference and present con"gurations of a directed curve. The present con"guration is de"ned by
the functions r(m, t), d

1
(m, t), and d

2
(m, t), while the reference con"guration is de"ned by the functions R(m), D

1
(m),

and D
2
(m). In this "gure, the values of these functions for a particular material point of the directed curve are

shown.
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modelled using a directed curve. This is a material curve to which, at each material point,
a set of deformable vector "elds (known as directors) are associated. As discussed in
references [20, 21], the theory extended the earlier work of the Cosserat brothers by
allowing an arbitrary number of deformable directors. A unique feature of this theory is the
ability to model lateral expansion and contraction of the rod-like body.t

For the purpose of the present paper, interest is restricted to a rod theory where two
director "elds, d

1
and d

2
, are present. Referring to Figure 1, the reference con"guration of

the body is modelled using a directed curve. The material points of this curve are uniquely
identi"ed by the co-ordinate m, and their position vectors are de"ned by the function
R"R(m). The directors associated with a material point in this con"guration are de"ned by
the functions D

1
"D

1
(m) and D

2
"D

2
(m). In the present con"guration, the position vector

of the material points are de"ned by r"r(m, t), while the directors are de"ned by
d
1
"d

1
(m, t) and d

2
"d

2
(m, t).

It is also useful to recall the correspondences between the position vectors of material
points of the rod-like body in its reference and present con"gurations to related quantites
for the directed curve. To this end, let (m, h1 , h2 ) be a co-ordinate system for the "xed region
of space occupied by the body in its reference con"guration. Then, the "xed directors can be
chosen such that, in the reference con"guration,

R*"R* (m, h1, h2)"R#h1D
1
#h2D

2
. (3)

In the present con"guration of the rod-like body, the following approximation is assumed
to hold:

r*"r* (m, h1, h2 , t)"r#h1d
1
#h2d

2
. (4)

Consequently, the directors can be considered to account for the deformation of material
"bers in the cross-sections of the body.
tThis feature is also important in modeling problems involving contact (see references [33, 28]).



Figure 2. A "xed reference con"guration of a rod-like body. The region of space occupied by the body has
a length ¸, width w, and height h. The reference con"guration of the material curve associated with the directed
curve is also shown in this "gure. This curve is chosen to be the (length-wise) centerline of the body. The curve
c shown in the "gure will be used later in prescribing applied forces.
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To determine the "elds r (m, t), d
1
(m, t), and d

2
(m, t), balance laws and constitutive relations

are postulated. After some reductions, a set of partial di!erential equations for these "elds
are obtained. These laws are not presented in all their generality here, instead they are
specialized to the rod-like body of interest. Speci"cally, of interest in this paper is a body
whose reference con"guration is of the form of a parallelepiped of length ¸ which has
a cross-section of height h and width w. This body is assumed to be composed of
a homogeneous, isotropic, linearly elastic material.

One denotes by x
i
and E

i
a Cartesian co-ordinate system and its associated right-handed

orthonormal basis vectors for E3. As shown in Figure 2, the m co-ordinate coincides with the
x
3

co-ordinate, while h1"x
1

and h2"x
2
. In addition, the directors are chosen such that
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. The motion of the directed curve is assumed to be such that
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where the longitudinal displacement, u
3
, and lateral displacements, d

11
and d

22
, are

functions of t and m. In the in"nitesimal (or linear) theory of interest here, the spatial and
time derivatives of the displacements are assumed to be small.

In the presence of body forces and tractions on the lateral surface of the rod-like body,
Green and Naghdi [19] have shown that the longitudinal and lateral displacements of the
rod are governed by the following balance laws:
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(6)

In these equations, m"x
3

is the arc-length parameter of the rod in a "xed reference
con"guration, j is the mass per unit length of m, and y11 and y22 are inertial coe$cients. For
the rod theory of interest, one also has the contact force, n, intrinsic contact forces, k1 and
k2, and contact director forces, m1 and m2. Constitutive relations are required for these
forces. The applied force jf and applied director forces, jl1 and jl2, represent the combined
contributions of body forces and tractions on the lateral surface of the rod-like body. In the
balance laws discussed above, certain components of the various forces are present:
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The solution of equations (6) depends on the initial conditions u
3
(m, t

0
), d
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0
), and
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(m, t
0
). In addition, six boundary conditions need to be prescribed. For example, for a rod

which is clamped at the end m"0 and traction-free at the end m"¸, the boundary
conditions at the "xed end are

u
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22
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while, at the other end of the rod,
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It should be noted that these and other boundary conditions can be inferred using known
correspondences between the rod theory of interest here and three-dimensional continuum
mechanics (see, for example, references [19] or [34]).

Assuming a linear isotropic elastic rod-like body with rectangular cross-sections, the
constitutive equations for the force components n
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For a rectangular rod of mass density o
0
, height h, width w, Young's modulus E, and the

Poisson ratio l, it is recalled, from reference [19], that
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where A"hw, I
1
"w3h/12, and I

2
"h3w/12. Prescriptions (10) are motivated by

comparing static solutions of the balance laws with corresponding solutions from the
three-dimensional theory of elasticity.

In the works of Green and Naghdi, it is standard to specify
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However, these prescriptions will not yield good agreement between the vibrational
response of the rod and three-dimensional results. In this paper, an idea of Rubin [15, 31] is
used and these coe$cients are chosen to match corresponding results from the
three-dimensional theory of linear elasticity. Consequently, one prescribes
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where i
i
are positive constants. The constants can be interpreted as correction factors in the

sense of the shear coe$cient in Timoshenko's beam theory, the coe$cients i and i
1

in the
Mindlin}Herrmann rod theory [26], and the coe$cients a

3
and a

2
}a
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in Krishnaswamy
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and Batra's works [23}25]. However, in contrast to these works, using equation (12) does
not e!ect the static responses predicted by the rod theory. Prescriptions for i

i
will be

discussed in section 5.
For completeness, an expression for the kinetic energy T of the model is recorded:

T"

i
1
2 P

L

0
AAA

Lu
3

Lt B
2
#i

2
I
2A

Ld
11

Lt B
2
#i

3
I
1A

Ld
22

Lt B
2

Bo
0
dm. (13)

This expression is obtained by simplifying the expression for the kinetic energy of the
directed curve recorded by Naghdi [20] and using equations (12). It may be used in
a standard manner to construct orthogonality relations for the eigenmodes.

3. FORMULATION OF THE FREE-VIBRATION PROBLEM

Motivated by the constitutive equations (9) and (10), it is convenient to de"ne the
displacement "elds
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Here, d is twice the average lateral deformation while c is the di!erence between the
height-wise and width-wise deformations. Further, the dimensionless "eld ;

3
and

dimensionless variables b, s, and q are introduced:
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where c
d
is the dilational wave speed (in an unbounded medium of the three-dimensional

theory of elasticity):
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From equations (6) and (14), the balance laws can be written in the form
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and
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In equation (17), @ indicates the partial derivative with respect to s, while the superposed
dot indicates the partial derivative with respect to q. For physically reasonable values of the
Poisson ratio, 0(l(0)5, g(l)3 (0, 1).

One now seeks harmonic solutions of equation (17), x"Xe*Xq, in the absence of applied
body forces and surface tractions, F"0. For future purposes, it is convenient to de"ne;(s),
<(s), and = (s):
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3
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Substituting equation (20) into equation (17) and setting F"0, one obtains the ordinary
di!erential equations

X@@#GX@#(K#X2M)X"0. (21)

For a given X, the solutions of equation (21) can be inferred by determining the eigenvalues
b of the equilibrium X"0:
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To discuss the eigenspectrum b (X), it is convenient to consider the cases b"0. These arise
when X2"0 and
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The case X"0 corresponds to the static solution*it is not considered here.
With the assistance of equation (26) and numerical explorations of the solutions of

equation (23) for various values of l, i
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are real-valued functions of X, h/w, and l. The cases where

X"X
1,2

are similar to the thickness-shear mode observed in Timoshenko's beam theory
(see references [29, 30] and references therein).

The general solutions of equation (17) for the "ve cases can be obtained in a standard
manner. Each set of solutions involves six constants A
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For the remaining two cases,
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where a"1 for Case II and a"2 for Case IV. In equations (27) and (28), the following
functions were used:
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AThese solutions could be expressed in terms of trigonometric and hyperbolic functions. However, in the
interests of brevity, a notation involving exponential functions is used.
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For Cases I, III, and V, "ve of the six constants A
1
,2,A

6
and X are determined using the

boundary conditions in a standard manner. However, for Cases II and IV, the boundary
conditions are used to determine "ve of these constants and establish an existence criterion
for a solution of the form (28).

4. A ROD WITH A SQUARE CROSS-SECTION

The free-vibration problem when the rod has a square cross-section, h"w, is
considerably simpler than the rectangular case. For this rod it can be argued on the basis of
symmetry that i
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3
. With this in mind, the ordinary di!erential equations (21) decouple

into two sets:
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These results were obtained from equation (26).
It is opportune to remark that equations (30) are similar to the equations considered by

Mindlin and Herrmann [26] and Krishnaswamy and Batra [23] for a circular rod.
Although these authors assume symmetric vibrations (i.e., d
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), it will become

apparent that in many cases the asymmetric vibrations decouple from the ;}< vibrations
and may be calculated independently. In addition, there are several evident similarities
between the results for the symmetric lateral vibrations when the cross-section is square and
when it is circular.

Following the procedure discussed in section 3, one solves for ;(s) and <(s) to "nd for
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ebKs, < (s)"!

4
+

K/1

b2#X2

g(l)b
A

K
ebKs, (33)

where b
1,2,3,4

are the solutions of

b4#A2f (l)g (l)#
f (l)i

2
12g(l)

(X2!X2
2
)#X2Bb2#

f (l)i
2
X2

12g(l)
(X2!X2

2
)"0. (34)

For Case IV, X"X
2
"S

12

i
2

(1#g(l)), and the general solution is

; (s)"A
1
cos (ss)#A

2
sin (ss)!

g(l)
X2

2

A
3
,

<(s)"
!s2#X2

2
g(l)s

(A
2
cos (ss)!A

1
sin (ss))#A

3
s#A

4
. (35)
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Here,

s"J2f (l)g(l)#X2
2
, (36)

is the imaginary part of one of the non-zero roots b of equation (34).
One next solves for=, to "nd, for Cases I, III, IV, and V, that

d
11
!d

22
"(A

5
eb5s#A

6
eb6s) e*Xq, (37)

where A
5

and A
6

are determined by the boundary and initial conditions, and

b
5,6

"$S
f (l)i

2
12g(l)

(X2
1
!X2). (38)

When X"X
1
"S

12

i
2

(1!g(l)), b
5,6

"0, and, as a result,

d
11
!d

22
"(A

5
s#A

6
) e*X1q (39)

is the solution of equation (31) for Case II. Here, A
5

and A
6

are constants.
It should be noted that the degenerate Case II pertains only to the vibrations associated

with d
11
!d

22
, while Case IV only pertains to the vibrations associated with d

11
#d

22
and

u
3
. Further, if the boundary conditions permit, X for the latter modes is determined from the

frequency equation for equations (30), while X for the modes associated with d
11
!d

22
is

determined independently from the frequency equation for equation (31). A speci"c example
shall presently be discussed to illustrate these comments.

5. PRESCRIPTIONS FOR i
1
, i

2
, AND i

3

The general solutions discussed in the previous section depend on the three parameters
i
i
. Among other issues, wave propagation in an in"nitely long parallelepiped is examined in

order to specify i
i
.

The present interest is in solutions of the form

d(s, q)"B
1
e*k(s~cq), c(s,q)"B

2
e*k(s~cq), ;

3
(s, q)"B

3
e*k(s~cq). (40)

Here, B
i
are constants, k is a dimensionless wavenumber, and c is a dimensionless wave

speed. Substituting equations (40) into equation (17), a set of three coupled linear equations
for B

i
are obtained. For the existence of non-trivial solutions, it is necessary that c and

k satisfy the characteristic equation associated with these equations. The characteristic
equation is (cf. equation (23))

m (b"ik, X"!kc)"0. (41)

The three solutions c
i
(k) of this equation de"ne the dispersion relations for the rod (cf.

Figure 3).B One should also note that the (dimensioned) wave speed c6 "c
d
/Ji

1
c.

Examining the solutions of equation (41) one notices that there are three branches (I, II,
and III). The extreme limits of these branches are important. First, for short wavelengths,
BThis "gure, along with Figures 4, 5, and 7}10 were obtained with the assistance of the contour plotting
algorithm of the symbolic manipulation package Mathematica [35].



Figure 3. Dimensionless wave velocities of an in"nite rod with a rectangular cross-section h/w"1)5 as
a function of the dimensionless wavenumber k. For this "gure, l"0)290, i

2
"i

3
"12/n2 .
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the limiting wave velocities are

lim
k?=

c2"
1

i
2

c2
s

c2
d

,
1

i
3

c2
s

c2
d

, 1, (42)

where c
s
"JE/2o

0
(1#l) is the shear wave speed. The limiting speeds of Branches I and III

are given by the minimum and maximum, respectively, of these three values. At the other
extreme,

lim
k?0

c2
1
"

c2
0

c2
d

, R, R, (43)

where c
0
"JE/o

0
is the bar wave speed. Here, c

0
/c

d
is the limiting wave speed of Branch I.

For a rod with a square cross-section, Branches I and III are associated with the u}d
displacements while Branch II is associated with the c displacements. When the rod has
a rectangular cross-section, the wave propagations of these two sets of displacements
become coupled.

The aforementioned limiting wave velocities can be used to prescribe i
i
as follows. First,

following Chree's result in reference [3] for rods of arbitrary cross-section, i
1
is chosen such

that the ("nite) short wavelength limit of c coincides with the bar wave speed. Consequently,

i
1
"1. (44)

The selection of i
2

and i
3

is not as clear-cut. These coe$cients should be obtained by
examining the wave speeds of extensional waves in a rectangular plate. However, no exact
solution from three-dimensional linear elasticity is available for this case.E

For the case of a rod with a square cross-section, the exact solution, from
three-dimensional linear elasticity, for vibrations of a parallelepiped where u

3
"0 is

considered.-- The (dimensionless) frequency associated with this solution is denoted by
EAs Green [2] has pointed out, most of the approximate solutions for wave propagation in in"nite rods of
non-circular cross-sections are not valid in the short wavelength limit.

--The solution is due to LameH [7]. It is discussed in references [8}10, 15]. In the notation of reference [15], the
solution is u

1
"a

1
sin (ut) sin (p*

1
x
1
) cos (p*

1
x
2
) and u

2
"!a

1
sin (ut) cos (p*

1
x
1
) sin (p*

1
x
2
), where cos (p*

1
h/2)"0.
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X
p

where

X
p
"

J2nc
s

c
d

. (45)

The counterpart of this exact solution in the rod theory of interest is assumed to correspond
to a motion where ;"<"0 and = is non-zero. This solution can be obtained from
equations (35) and (39) by setting A

1
,2,A

5
"0. Following Mindlin and Deresiewicz [32]

and Krishnaswamy and Batra [24], one prescribes i
2

and i
3

in order to match two

frequencies: X
P
"X

1
. Noting that X

1
"J24/i

2
(c

s
/c

d
), this results in the prescription

i
2
"i

3
"

12

n2
+1)21585. (46)

Since suitable exact solutions from the three-dimensional theory of linear elasticity do not
presently appear to be available when hOw, the conservative prescription (46) is also
adopted for this case.tt

6. VIBRATIONS OF A FREE}FREE ROD

To illustrate the solutions of the vibrating rod model, consider the case of a free}free rod
which has rectangular cross-sections (bO1). For this rod, the boundary conditions are

;@(s"0)"!g (l)<(s"0), ;@As"
¸

hB"!g(l)<As"
¸

hB,

<@ (s"0)"0, <@As"
¸

hB"0, ={ (s"0)"0, =@As"
¸

hB"0. (47)

To formulate these conditions, equations (8), (9), (10), (15), and (20) were used.
Using the boundary conditions and equations (27) and (28), the following equation is

formed:

DA"0, (48)

whereA is the column vector [A
1
,2, A

6
] and D is a six-by-six matrix. The elements D

IK
of

this matrix are, for Cases I, III, and V,

D
1K

"!

X2

b
K

, D
2K

"!

X2

b
K

e(b
K
¸/h), D

3K
"

b2
K
#X2

g(l)
,

D
4K

"

b2
K
#X2

g(l)
e(b

K
¸/h), D

5K
"b

K
f
2
(b

K
), D

6K
"b

K
f
2
(b

K
) e(b

K
¸/h) , (49)

where K"1,2, 6. For Cases II and IV, the components are

D
1K

"!

X2a
b
K

, D
2K

"!

X2a
b
K

e(b
K
¸/h), D

3K
"

b2
K
#X2a
g(l)

,

D
15
"0, D

16
"g(l), D

25
"g(l)

¸

h
, D

26
"g(l),

D
35
"1, D

36
"0, D

45
"1, D

46
"0,
??An alternative prescription might be to parallel the developments for the rods with a square cross-section, but
use a "nite-element analysis for a given parallelepiped to "nd modes of vibration where u

3
"0. The two lowest

frequencies of these modes could be used to prescribe i
2

and i
3
. However, this approach is not pursued here.



Figure 4. Dimensionless natural frequencies for a free}free rod with a rectangular cross-section as a function of
the rod's slenderness ratio ¸/h . For this "gure, h/w"1)5, l"0)290, i

1
"1, i

2
"i

3
"12/n2 , and, consequently,

X
1
"2)72031 and X

2
"4)96751.
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D
4K

"

b2
K
#X2a
g(l)

e(b
K
¸/h), D

5K
"b

K
f
2
(b

K
), D

6K
"b

K
f
2
(b

K
) e(b

K
¸/h),

D
55
"D

65
"

(i
2
#i

3
)X2a /24g(l)!1#b/2(1/g(l)#1)

1!b/2(1/g(l)!1)!(i
2
!i

3
)X2a /24g(l)

, D
56
"D

66
"0, (50)

where K"1,2, 4, a"1 for Case II, and a " 2 for Case IV.
The equation det(D)"0 is the frequency equation. For Cases I, III, and V, this equation

determines X.AANumerical results for X as a function of the slenderness ratio ¸/h are shown
in Figure 4. As the slenderless ratio increases, the frequency equation becomes increasingly
ill-conditioned.EE Consequently, the range of ¸/h in Figure 4 is limited. The frequency curves
AAIn the interests of brevity, the precise forms of the frequency equations for these cases are not presented here.
BBThis ill-conditioning arises because the frequency equation contains hyperbolic and trigonometric functions.

As the slenderness ratio increases, the terms involving the hyperbolic functions dominate the frequency equation
and it becomes increasing di$cult to solve the equation.



Figure 5. The dimensionless natural frequencies X for a free}free rod with a square cross-section as a function of
the slenderness ratio ¸/h . For this "gure, l"0)290, i

1
"1, i

2
"i

3
"12/n2, and, consequently, X

2
"3)72838.

The frequency curves displayed in this "gure correspond to the modes ;(s) and <(s).
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in this "gure can be compared to those predicted by the wave equation. For the wave
equation (1), the corresponding frequency equation is

sinA
Xc

d
c
0

¸

hB"0. (51)

The solutions X of equation (51) provide good approximations to the "rst natural
frequencies shown in Figure 4 for values of ¸/h'1, and to the second natural frequency for
X(X

1
and ¸/h'2)5. However, as is to be expected, the higher the X, the poorer the

approximation (51) provides.
For Cases II and IV, the analysis used in reference [30] is followed. Speci"cally, X is

known and det (D)"0 is used to determine the combinations of geometric and material
properties of the rod which support the modes (28). Referring to Figure 4, one can see that
the intersection of the frequency curves X(¸/h) and the lines X"X

1
and X

2
occurs at

discrete values of the slenderness ratio. These values correspond to those that would be
obtained from the equation det (D)"0. For Cases II and IV, the null vectors of
D determine the eigenmodes.

It would be desirable to compare the results of this section to predictions from the
three-dimensional theory of elasticity. However, no published results on the vibrational
frequencies of free}free parallelepipeds where hOw appear to be available.

7. A FREE}FREE ROD WITH SQUARE CROSS-SECTIONS

To facilitate comparisons with other researches and because of its design importance, the
case of a rod with a square cross-section and free}free boundary conditions is considered.
For this rod, the boundary conditions are again given by equations (47). It should be clear
that these boundary conditions preserve the decoupling of ; and < from =. In the
discussion, the modes associated with ; and < are addressed "rst.

As shown in Figure 5, the natural frequencies as functions of ¸/h are calculated by "rst
constructing the frequency equations associated with the boundary conditions. The details



Figure 6. The "rst (a) and second (b) modes for a free}free rod with a square cross-section, l"0)290, i
1
"1,

i
2
"i

3
"12/n2 , and a slenderness ratio ¸/h"5. For this rod, the "rst natural frequency is X"0)547527, and the

second is X"1)0866044. For convenience the amplitude of the mode shape is chosen such that ;(0)"1. In
addition, < (s)/2 are displayed because they correspond to the lateral deformation of the rod.
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can be easily inferred from the developments of section 6. As is evident from Figure 5, the
frequencies associated with the vibrations of d

11
#d

22
and u

3
can be divided into two

regions, dependent on whether the natural frequency is greater than or less than X
2
. In the

lower frequency regime, the modes are composed of hyperbolic and trigonometric
terms*examples of which are shown in Figure 6. When X'X

2
, these modes only contain

trigonometric terms.
For a given l, only certain discrete values of ¸/h support solutions of the form (35)

where X"X
2
. To "nd these points, one follows reference [30] and calculates the

matrix D:

D"

0
X2

2
s

0 g(l)

!

X2
2

s
sinA

s¸
h B

X2
2

s
cosA

s¸
h B

g(l)¸
h

g(l)

2f (l) 0 1 0

2f (l) cosA
s¸
h B 2f (l) sinA

s¸
h B 1 0

. (52)

The determinant of this matrix is zero if, and only if,

tanA
s¸
h B#

sf (l)g(l)
12(1#g(l)) A

¸

hB"0. (53)



Figure 7. The dimensionless natural frequencies X associated with the asymmetric lateral vibrations of
a free}free rod with a square cross-section as a function of the slenderness ratio ¸/h . For this "gure, l"0)290,
i
1
"1, i

2
"i

3
"12/n2, and, consequently, X

1
"2)41627. The frequency curves displayed in this "gure

correspond to the mode= (s). It should be noted that these frequencies can never be smaller than X
1
.
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For a given l, this equation determines ¸/h which supports the natural frequency X
2
. For

completeness, the corresponding eigenmode is also recorded:

; (s)"A
1Acos (ss)#tanA

s¸
2hB sin (ss)#

2f (l)g (l)
X2

2
B,

<(s)"A
1A

2f (l)
s B Asin(ss)!2ss!tanA

s¸
2hB cos (ss)B

!A
1A

X2
2

g (l)sB tanA
s¸
2hB . (54)

Here, the constant A
1

is determined from the initial conditions using equations (13).
Turning to the solutions for d

11
}d

22
, one "nds that these solutions are not supported in

a free}free rod when X(X
1

(cf. equation (37)). From equation (39) and the boundary
conditions, one "nds that the eigenmode when X"X

1
is =(s)"A

6
. This mode can be

excited in all square rods. For higher frequencies, the eigenmode is

= (s)"A
5
cos (ps)#A

6
sin (ps), (55)

where p2"f (l)i
2
/12g(l)(X2!X2

1
) (cf. equation (38)). Further, X is determined from the

characteristic equation

sinA
¸

hS
f (l)i

2
12g(l)

(X2!X2
1
)B"0. (56)

The solutions of this equation as functions of the slenderness ratio ¸/h are displayed in
Figure 7.

The results of the model's predictions can be compared to the work of Hutchinson and
Zillmer [11]. These authors used the three-dimensional theory of linear elasticity and
consider solutions of these equations which are sums of products of trigonometric functions.



Figure 8. Comparison of the natural frequencies u/c
s

associated with the symmetric lateral vibrations of
a free}free rod with a square cross-section with those predicted using the wave equation. The solid lines in this
"gure correspond to the ;}< vibrations where X(X

2
, while the dashed lines correspond to the "rst six natural

frequencies predicted by the wave equation. For this "gure, l"0)300, h"w"1)0, i
1
"1, and i

2
"i

3
"12/n2 .
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As a result, their solutions are not equivalent to those considered in this paper. However,
the asymptotic behavior of the frequencies of these solutions can be approximated by the
corresponding frequencies for the wave equation (cf. equation (51)). In addition, these
authors present results for a parallelepiped where h"w"0)5, l"0)3 and ¸ varies.EE To
facilitate the comparison, results for the ;}< vibrations of the parallelepiped are shown in
Figure 8. In this "gure, the dotted lines represent the corresponding results predicted by the
wave equation (cf. equations (1) and (51). Comparing the results of Figure 8 to those
presented in Figures 4 and 5 of reference [11], it is evident that the frequencies of the modes
can be approximated using equation (51) provided that ¸/h is su$ciently large. It is also
evident from Figure 8, that the behavior of frequency spectra for the;}<modes as ¸/h gets
smaller, is not the same as those for the modes discussed in reference [11].

Hutinchson and Zillmer [11] do not present results for ¸/h(1. It is to be expected,
however, that the behavior of the frequency spectra should be qualitatively similar to those
for a circular cylinder. Rumerman and Raynor [36], using the three-dimensional theory of
elasticity, have presented results for the cylinder. Krishnaswamy and Batra [23] and
McNiven and Perry [37] examined the cylinder using rod theories. Referring to Figure 5,
the frequency spectrum results for the lowest mode agrees rather well with references [23,
36, 37]. As ¸/hP0, XP+3)3. This frequency is known as the plate frequency. For
a circular disk of radius 0)5h and l"0)29, the plate frequency is X+3)7 (cf. p. 498 of
reference [1]). However, for the second mode, it is to be anticipated that the frequency
should tend to zero as ¸/hP0. Clearly, this is not the case. A related discrepency arises in
the results of McNiven and Perry [37] and Krishnaswamy and Batra [23].

8. A FIXED}FREE ROD

In order to compare the frequency spectra predicted by the model with the results of
other researchers who used the three-dimensional theory of linear elasticity, it is convenient
EEIn the notation of reference [11], 2b"¸, 2c"h, and 2a"w. Their pertinant results are supposed to be
presented in Figures 4 and 5 of reference [11]. However, as noted in footnote 4 of Rubin [15], the plots for Figures
6 and 7 were juxtaposed with those for Figures 4 and 5, respectively.



Figure 9. The dimensionless natural frequencies X associated with the vibrations of a cantilevered rod with
a rectangular cross-section as a function of the slenderness ratio ¸/h . For this "gure, l"0)30, h/w"0)5, i

1
"1,

i
2
"i

3
"12/n2 , and, consequently, X

1
"1)38049 and X

2
"3)22974. The dashed lines in the "gure correspond to

the frequencies predicted by the wave equation (1).
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to consider the case of the cantilevered rod. Here, the boundary conditions are

;(s"0)"0, <(s"0)"0, =(s"0)"0,

;{As"
¸

hB"!g(l)<As"
¸

h B, <{As"
¸

hB"0, =@As"
¸

hB"0. (57)

To formulate these conditions, equations (7)}(10), (15), and (20) were used. Using the
boundary conditions and equations (27) and (28), a frequency equation is formed and the
frequency spectra and eigenmodes can be calculated. Because the results are similar to those
discussed in the previous two sections, details of the calculations are omitted and summaries
of the results are presented.

The frequency spectra predicted by the model are shown in Figure 9 for the case of
a particular rectangular cross-section. In this "gure, the corresponding frequencies
predicted by the wave equation (1) are also shown. It should be noted that the "rst mode
frequency predicted by the wave equation agrees with that predicted by the model for
¸/h'1. For the higher modes, this agreement occurs at far higher values of ¸/h as
expected. The corresponding results for the case of a square cross-section are shown in
Figure 10. In this case, the;}<modes decouple from the=modes. Furthermore, the latter
modes only exist when X'X

1
. It is interesting to note that although the frequency spectra

for the ;}< modes asymptote to those predicted by the wave equation as the slenderness
ratio is increased, no such correspondance exists between frequency curves for the=modes
and those predicted by the wave equation. Examples of the eigenmodes for a particular
cantilevered rod with a rectangular cross-section can be found in Figures 6.6 and 6.7 of
Turcotte [22].

The selection of parameters for Figures 9 and 10 was motivated by the results of Leissa
and Zhang [13]. These authors considered vibrations of a cantilevered parallelepiped. By
constructing approximate solutions to the three-dimensional theory of elasticity for this



Figure 10. The dimensionless natural frequencies X associated with the vibrations of a cantilevered rod with
a square cross-section as a function of the slenderness ratio ¸/h . For this "gure, l"0)30, i

1
"1, i

2
"i

3
"12/n2 ,

and, consequently, X
1
"2)37482 and X

2
"3)75492. The solid lines correspond to the;}<modes, the light dashed

()))))) lines correspond to the = modes, and the dashed lines (-- - - -) in the "gure correspond to the frequencies
predicted by the wave equation (1).

TABLE 1

Comparison of natural frequencies X for cantilivered parallelepipeds

Dimensions Frequencies

Mode 1 Mode 2 Mode 3 Mode 4

¸

h
"

h

w
"1)0 1)39 2)8s,t 3)23 3)86s

(1)38)t (2)22) (2)51) (2)63)

¸

h
"2)0,

h

w
"1)0 0)688 1)99 2)49s 2)82s

(0)69) (1)97) (2)18) (2)37)
¸

h
"2)0,

h

w
"0)5 0)690 1)40 1)77 2)03

(0)690) (1)21) (1)38) (1)88)
¸

h
"0)5,

h

w
"1)0 2)71 3)86s 3)94 5)78

(2)53) (2)63) (3)10) (3)18)
¸

h
"1)0,

h

w
"0)5 1)35 1)61 2)65 3)01

(1)32) (1)45) (1)75) (2)43)

sCorrespond to = modes for the cases w/h"1.
tResults in parenthesis are from Table 2 of reference [13].
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problem, they calculated the frequency spectra for various con"gurations. In Table 1, some
of Leissa and Zhang's results are presented along with the corresponding results predicted
by the model used in this paper. It is evident from the table that the natural frequency for the
"rst mode agrees rather well with the results of reference [13]. Indeed, for the cases
considered in Table 1, ¸/h"0)5, ¸/h"1)0, and ¸/h"2)0, the wave equation predicts a "rst
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natural frequencies of X"2)71, 1)44, and 0)677, respectively. However, the discrepencies
between Leissa and Zhang's results and the frequencies predicted by the model used in the
present paper become increasingly larger for the higher modes. This matter can be partially
explained when one considers the nature of the displacement "elds considered in reference
[13] and the present paper (cf. equations (3) and (4)). Speci"cally, the model discussed in
section 2 assumes that the lateral displacement varies linearly through the cross-section,
whereas the displacement "eld used in reference [13] allows trigonometric and hyperbolic
variations.

9. CLOSING REMARKS

With the assistance of equations (3), (4), and (14), it can be shown that the displacement
"eld u* of a point of the parallelepiped examined in this paper is

u* (x
i
, t)"

x
1
2 A<A

x
3
h B#=A

x
3
h BB e*utE

1

#

x
2
2 A<A

x
3
h B!=A

x
3
h BB e*utE

2
#h;A

x
3
h B e*utE

3
. (58)

In discussions of the Poisson e!ect, it is usual to consider a bar in a state of uniaxial tension
(cf. section 112 of reference [1]). In this case, the lateral displacement "elds, u

1
and u

2
, are

related to the longitudinal displacement "eld u
3
"ex

3
:

u
1
"!lex

1
, u

2
"!lex

2
, (59)

where e is a constant. Clearly, the displacement "eld (58) is not of this form.--- When one
realizes that the modes of vibration of the rod-like body discussed in this paper do not
correspond to the body in a state of uniaxial tension, then this conclusion becomes evident.

It is of interest to examine how the modes discussed in this paper can be excited using
tractions applied to its lateral surface. It shall be assumed that the ends x

3
"0 and ¸ are

traction-free. To examine this issue, consider the static problem of deforming a rod-like
body such that its static displacement "eld u (x

i
)"u*(x

i
, t) e~*ut. Using equations (3), (4), (6),

(17), and (58), this static solution satis"es the balance laws (6) if

jf
3
"u2j;A

x
3
h B, jl

11
"

u2jy11

2 A<A
x
3
h B#=A

x
3
h BB,

jl
22
"

u2jy22

2 A=A
x
3
h B!<A

x
3
h BB. (60)

Prescriptions for jf, jl1, and jl2 are presented in references [19, 20]:

jf"Q
c

tds, jl1"Q
c

tx
1
ds, jl2"Q

c

tx
2
ds, (61)

where s is the arc-length parameter of the curve c and t is the traction vector. As shown in
Figure 2, c is the bounding curve of a cross-section. Combining equation (60) with equation
sssIf one considers static solutions of the balance laws for the directed curve which are appropriate to the uniaxial
tension case, then a solution of the form (59) will be obtained (cf. equations (9.11)}(9.15) of reference [18]):
d
11
"d

22
"!l (Lu

3
/Lm) .
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(61), three equations for the components t
i
"t )E

i
of t are obtained:

Q
c

t
3
ds"u2j;A

x
3
h B, Q

c

t
1
x
1
ds"

u2jy11

2 A<A
x
3
h B#=A

x
3
h BB,

Q
c

t
2
x
2
ds"

u2jy22

2 A=A
x
3
h B!<A

x
3
h BB . (62)

It is not too di$cult to see that there are numerous solutions t
i
to these three equations. The

easiest ones to visualize are those where t
i
are piecewise constant on each of the four straight

segments of c.
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